Abstract

IntroductionInadequate flow enhancement on the one hand, and excessive flow enhancement on the other hand, remain frequent complications of arteriovenous fistula (AVF) creation, and hamper hemodialysis therapy in patients with end-stage renal disease. In an effort to reduce these, a patient-specific computational model, capable of predicting postoperative flow, has been developed. The purpose of this study was to determine the accuracy of the patient-specific model and to investigate its feasibility to support decision-making in AVF surgery.MethodsPatient-specific pulse wave propagation models were created for 25 patients awaiting AVF creation. Model input parameters were obtained from clinical measurements and literature. For every patient, a radiocephalic AVF, a brachiocephalic AVF, and a brachiobasilic AVF configuration were simulated and analyzed for their postoperative flow. The most distal configuration with a predicted flow between 400 and 1500 ml/min was considered the preferred location for AVF surgery. The suggestion of the model was compared to the choice of an experienced vascular surgeon. Furthermore, predicted flows were compared to measured postoperative flows.ResultsTaken into account the confidence interval (25th and 75th percentile interval), overlap between predicted and measured postoperative flows was observed in 70% of the patients. Differentiation between upper and lower arm configuration was similar in 76% of the patients, whereas discrimination between two upper arm AVF configurations was more difficult. In 3 patients the surgeon created an upper arm AVF, while model based predictions allowed for lower arm AVF creation, thereby preserving proximal vessels. In one patient early thrombosis in a radiocephalic AVF was observed which might have been indicated by the low predicted postoperative flow.ConclusionsPostoperative flow can be predicted relatively accurately for multiple AVF configurations by using computational modeling. This model may therefore be considered a valuable additional tool in the preoperative work-up of patients awaiting AVF creation.

Highlights

  • Inadequate flow enhancement on the one hand, and excessive flow enhancement on the other hand, remain frequent complications of arteriovenous fistula (AVF) creation, and hamper hemodialysis therapy in patients with end-stage renal disease

  • Patients suffering from end-stage renal disease (ESRD) depending on hemodialysis (HD) therapy require a functional vascular access (VA) [1], which can be provided by creation of an arteriovenous fistula (AVF), creation of an arteriovenous graft (AVG), or the insertion of a central venous catheter (CVC)

  • An important downside of AVF creation is the significant probability of early thrombosis or nonmaturation (20–50%) due to insufficient flow enhancement, in lower arm AVF’s [6,7], and excessive postoperative flow enhancement resulting in steal syndrome and cardiac failure in elbow AVF’s [8,9]

Read more

Summary

Introduction

Inadequate flow enhancement on the one hand, and excessive flow enhancement on the other hand, remain frequent complications of arteriovenous fistula (AVF) creation, and hamper hemodialysis therapy in patients with end-stage renal disease. In an effort to reduce these, a patient-specific computational model, capable of predicting postoperative flow, has been developed. Patients suffering from end-stage renal disease (ESRD) depending on hemodialysis (HD) therapy require a functional vascular access (VA) [1], which can be provided by creation of an arteriovenous fistula (AVF), creation of an arteriovenous graft (AVG), or the insertion of a central venous catheter (CVC). An important downside of AVF creation is the significant probability of early thrombosis or nonmaturation (20–50%) due to insufficient flow enhancement, in lower arm AVF’s [6,7], and excessive postoperative flow enhancement resulting in steal syndrome and cardiac failure (up to 20%) in elbow AVF’s [8,9]. Flow related complications persist and additional interventions are often needed to make the AVF suitable for HD treatment [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call