Abstract

Intelligent multi-purpose robotic assistants have the potential to assist nurses with a variety of non-critical tasks, such as object fetching, disinfecting areas, or supporting patient care. This paper focuses on enabling a multi-purpose robot to guide patients while walking. The proposed robotic framework aims at enabling a robot to learn how to navigate a crowded hospital environment while maintaining contact with the patient. Two deep reinforcement learning models are developed; the first model considers only dynamic obstacles (e.g., humans), while the second model considers static and dynamic obstacles in the environment. The models output the robot’s velocity based on the following inputs; the patient’s gait velocity, which is computed based on a leg detection method, spatial and temporal information from the environment, the humans in the scene, and the robot. The proposed models demonstrate promising results. Finally, the model that considers both static and dynamic obstacles is successfully deployed in the Gazebo simulation environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.