Abstract
ObjectiveVirtual Consultations may reduce the need for face-to-face outpatient appointments, thereby potentially reducing the cost and time involved in delivering health care. This study reports a discrete choice experiment (DCE) that identifies factors that influence patient preferences for virtual consultations in an orthopaedic rehabilitation setting.MethodsPrevious research from the CONNECT (Care in Orthopaedics, burdeN of treatmeNt and the Effect of Communication Technology) Project and best practice guidance informed the development of our DCE. An efficient fractional factorial design with 16 choice scenarios was created that identified all main effects and partial two-way interactions. The design was divided into two blocks of eight scenarios each, to reduce the impact of cognitive fatigue. Data analysis were conducted using binary logit regression models.ResultsSixty-one paired response sets (122 subjects) were available for analysis. DCE factors (whether the therapist is known to the patient, duration of appointment, time of day) and demographic factors (patient qualifications, access to equipment, difficulty with activities, multiple health issues, travel costs) were significant predictors of preference. We estimate that a patient is less than 1% likely to prefer a virtual consultation if the patient has a degree, is without access to the equipment and software to undertake a virtual consultation, does not have difficulties with day-to-day activities, is undergoing rehabilitation for one problem area, has to pay less than £5 to travel, is having a consultation with a therapist not known to them, in 1 weeks’ time, lasting 60 minutes, at 2 pm. We have developed a simple conceptual model to explain how these factors interact to inform preference, including patients’ access to resources, context for the consultation and the requirements of the consultation.ConclusionsThis conceptual model provides the framework to focus attention towards factors that might influence patient preference for virtual consultations. Our model can inform the development of future technologies, trials, and qualitative work to further explore the mechanisms that influence preference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.