Abstract
Wireless insulin pumps have been widely deployed in hospitals and home healthcare systems. Most of them have limited security mechanisms embedded to protect them from malicious attacks. In this paper, two attacks against insulin pump systems via wireless links are investigated: a single acute overdose with a significant amount of medication and a chronic overdose with a small amount of extra medication over a long time period. They can be launched unobtrusively and may jeopardize patients’ lives. It is very urgent to protect patients from these attacks. We propose a novel personalized patient infusion pattern based access control scheme (PIPAC) for wireless insulin pumps. This scheme employs supervised learning approaches to learn normal patient infusion patterns in terms of the dosage amount, rate, and time of infusion, which are automatically recorded in insulin pump logs. The generated regression models are used to dynamically configure a safe infusion range for abnormal infusion identification. This model includes two sub models for bolus (one type of insulin) abnormal dosage detection and basal abnormal rate detection. The proposed algorithms are evaluated with real insulin pump. The evaluation results demonstrate that our scheme is able to detect the two attacks with a very high success rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.