Abstract

BackgroundEndometrial cancer (EC) is a major gynecological cancer with increasing incidence. It comprises four molecular subtypes with differing etiology, prognoses, and responses to chemotherapy. In the future, clinical trials testing new single agents or combination therapies will be targeted to the molecular subtype most likely to respond. As pre-clinical models that faithfully represent the molecular subtypes of EC are urgently needed, we sought to develop and characterize a panel of novel EC patient-derived xenograft (PDX) models.MethodsHere, we report whole exome or whole genome sequencing of 11 PDX models and their matched primary tumor. Analysis of multiple PDX lineages and passages was performed to study tumor heterogeneity across lineages and/or passages. Based on recent reports of frequent defects in the homologous recombination (HR) pathway in EC, we assessed mutational signatures and HR deficiency scores and correlated these with in vivo responses to the PARP inhibitor (PARPi) talazoparib in six PDXs representing the copy number high/p53-mutant and mismatch-repair deficient molecular subtypes of EC.ResultsPDX models were successfully generated from grade 2/3 tumors, including three uterine carcinosarcomas. The models showed similar histomorphology to the primary tumors and represented all four molecular subtypes of EC, including five mismatch-repair deficient models. The different PDX lineages showed a wide range of inter-tumor and intra-tumor heterogeneity. However, for most PDX models, one arm recapitulated the molecular landscape of the primary tumor without major genomic drift. An in vivo response to talazoparib was detected in four copy number high models. Two models (carcinosarcomas) showed a response consistent with stable disease and two models (one copy number high serous EC and another carcinosarcoma) showed significant tumor growth inhibition, albeit one consistent with progressive disease; however, all lacked the HR deficiency genomic signature.ConclusionsEC PDX models represent the four molecular subtypes of disease and can capture intra-tumor heterogeneity of the original primary tumor. PDXs of the copy number high molecular subtype showed sensitivity to PARPi; however, deeper and more durable responses will likely require combination of PARPi with other agents.

Highlights

  • Endometrial cancer (EC) is a major gynecological cancer with increasing incidence

  • In addition to the 18 successful EC patient-derived xenograft (PDX) mentioned above, seven patient tumor transplants showed in vivo growth; these were confirmed to be lymphomas based on positive leukocyte common antigen staining

  • This study reports detailed genomics data for 11 of these 18 EC PDX models based on the availability of DNA from matched blood and multiple passages at study commencement

Read more

Summary

Introduction

Endometrial cancer (EC) is a major gynecological cancer with increasing incidence. It comprises four molecular subtypes with differing etiology, prognoses, and responses to chemotherapy. EC is comprised of multiple histological subtypes, including low- and high-grade endometroid, serous, clear cell, and uterine carcinosarcomas. The Cancer Genome Atlas (TCGA) identified four molecular subtypes: POLE mutant with an excellent prognosis; MSI/”hypermutated” equivalent to mismatch repair deficient (MMRd) with an intermediate prognosis; copy number high (CNhigh) or frequently TP53 mutated (p53mut) with the worst prognosis; and copy number low (CN-low) or p53 wild-type with intermediate prognosis [3]. Similar algorithms have been developed by multiple labs and shown to be prognostically important in low-, intermediate-, and high-risk ECs [2, 4,5,6]. Genomic studies of uterine carcinosarcomas (UCS) have revealed the presence of similar subtypes; the majority of tumors (~90%) contain TP53 mutations and a low tumor mutation burden (TMB) [7,8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call