Abstract

Dysbiosis of gut microbiota promotes colitis in ulcerative colitis (UC). Enterococcus faecium is an important constituent of dysbiotic microbiota. However, the mechanisms underlying E. faecium-induced colitis remain unclear. Overall, 23 E. faecium strains isolated from human feces and 3 commercial strains were inoculated into Il10-/- mice. Mouse colons were histologically evaluated and analyzed using real-time PCR analysis of cytokines. Genes in 26 E. faecium strains were identified by whole-genome shotgun sequencing of genomic DNA. The production of reactive oxygen species (ROS) from each strain was measured. An antioxidant, lipoic acid, was orally administered to the colitis mouse model. Inoculation of E. faecium derived from patients with UC resulted in colitis in Il10-/- mice. The genotypes of 26 strains were characterized by identifying 1893 known genes; clustering all the strains based on the genotypes showed two major groups-inflammatory and probiotic clusters. Additionally, linear discriminant analysis clarified that lipoic acid metabolism was a significantly abundant pathway in the probiotic cluster compared to the inflammatory cluster. Further, the production of ROS was greater in inflammatory than in probiotic strains. Administration of lipoic acid in E. faecium-inoculated mice ameliorated colitis. Enterococcus faecium strains in the inflammatory cluster promoted colitis with higher production of ROS than the strains in the probiotic cluster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call