Abstract

The purpose of this study was to examine the use of transfer learning in deep learning-based auto-segmentation of daily kilovoltage computed tomography (kVCT) images for patient-specific adaptive radiotherapy. Using data from the first cohort of patients treated with the innovative BgRT system, the objective of this study was to evaluate the potential benefits of this approach in facilitating efficient and effective adaptive radiotherapy. For the head and neck (HaN) site and pelvic site, we first trained a deep convolutional segmentation network using a population dataset, consisting of 67 and 56 patient cases, respectively. This population network was then fine-tuned for a specific patient using a transfer learning approach, adapting the network weights. The auto-segmentation network utilized in this study was a 23-layer U-Net with batch normalization, a dropout rate of 0.5, and four skip connections between the encoder and decoder at different levels. We used initial planning CT and 5-26 sets of daily kVCT scans with a total of 8,039 images for patient-specific learning in the 6 HaN cases and 4 pelvic cases, particularly analyzing the relationship between the number of sequential patient-specific training data and the performance of the auto-segmentation. We compared the performance of the patient-specific network with the population network and the clinical rigid registration method, using the Dice similarity coefficient (DSC) as the evaluation metric. Additionally, we investigated the corresponding dosimetric impacts of the different auto-segmentation and registration methods. The patient-specific network showed improved mean DSC scores of 0.88 and 0.90 for three HaN organs at risk (OARs) and eight pelvic targets and OARs, respectively, compared to the population network (0.70 and 0.63) and the registration method (0.72 and 0.72). The DSC of the patient-specific network steadily improved as the number of longitudinal training cases increased, reaching near saturation after 6 training cases. The use of the patient-specific auto-segmentation resulted in a reduction of the mean discrepancy in target and OAR doses between delivery and planning from 5.5% with the clinical rigid registration to 1.1%. The use of patient-specific transfer learning in auto-segmenting kVCT images showed higher accuracy compared to a conventional population network and clinical registration-based method. This approach holds promise for enhancing dose evaluation accuracy in adaptive radiotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call