Abstract

Perovskite/silicon tandem solar cells offer a promising route to increase the power conversion efficiency of crystalline silicon (c-Si) solar cells beyond the theoretical single-junction limitations at an affordable cost. In the past decade, progress has been made toward the fabrication of highly efficient laboratory-scale tandems through a range of vacuum- and solution-based perovskite processing technologies onto various types of c-Si bottom cells. However, to become a commercial reality, the transition from laboratory to industrial fabrication will require appropriate, scalable input materials and manufacturing processes. In addition, perovskite/silicon tandem research needs to increasingly focus on stability, reliability, throughput of cell production and characterization, cell-to-module integration, and accurate field-performance prediction and evaluation. This Review discusses these aspects in view of contemporary solar cell manufacturing, offers insights into the possible pathways toward commercial perovskite/silicon tandem photovoltaics, and highlights research opportunities to realize this goal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.