Abstract

In the conventional seesaw models of neutrino masses, leptogenesis occurs at a very high scale. Three approaches have been discussed in the literature to lower the scale of leptogenesis making them testable: mass degeneracy, hierarchy of couplings and three-body decays. We advocate yet another approach to a testable leptogenesis, whereby the decaying particles could go out of equilibrium at an accessible scale due to kinematics, although their couplings to the decay products are larger for generating a desired CP asymmetry. We demonstrate this new possibility for the testable leptogenesis in a two-Higgs doublet model where the neutrino masses originate from a one-loop diagram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.