Abstract

This paper studies the pathways to formulate lightweight and ultra-lightweight 3D printable cementitious composites. A hybrid approach was proposed by combining the advantages of traditional chemical-induced foaming (foaming approach) and lightweight particulate inclusions (synthetic foam approach). A comprehensive experimental program was conducted to evaluate the effects of foaming agents and fly ash cenosphere (FAC) on the printability, microstructure, mechanical and thermal properties of 3D printed samples. The results showed that the hybrid approach could produce a mixture with a density as low as 470 kg/m3 while ensuring good flowability and buildability owing to the lubricating effect of foaming and supporting skeleton formed by FAC. In addition, a three-step homogenization procedure was also developed to predict the effective elastic modulus and thermal conductivity of 3D printable cementitious composites and cementitious foam. The findings of the study highlighted the effectiveness of the hybrid approach in formulating 3D printable ultra-lightweight cementitious composites in thermal insulation and acoustic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.