Abstract

Pathways of two-body fragmentation of BrCNq+ (q = 2, 3) have been explored by combined experimental and theoretical studies. In the experiment, the BrCN molecule is ionized by 1keV electron impact and the created fragment ions are detected using an ion momentum imaging spectrometer. Six two-body fragmentation channels are identified. By measuring the momentum vectors of the fragment ions, the kinetic energy release (KER) distributions for these channels have been determined. Theoretically, the potential energy curves of BrCNq+ (q = 2, 3) as a function of Br-C and C-N internuclear distances are calculated by the complete active space self-consistent field method. By comparing the measured KER and theoretical predictions, pathways for the fragmentation channels are assigned. The relative branching ratios of the channels are also determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call