Abstract

α-amyloids present a novel self-assembly principle that can be utilized to prepare functional biomaterials. Evidence of α-amyloid formation in the active core of the human LL-37 protein (comprising residues 17 to 29) was associated with this peptide's membranolytic property. Though mechanistic pathways of β-amyloid formation are known, such studies are scarce in α-amyloids. Modern computational techniques allow such mechanistic studies in molecular detail. Here, we propose aggregation pathways in hLL-3717-29 through molecular dynamics simulations. We first identified oligomers among peptides based on a distance criterion. The distribution of oligomers was then used to build Markov state models from which pathways were obtained using the framework of transition path theory. We checked the structural stability of the peptides during oligomerization, which is crucial from their functional point of view. We also investigated the key residues that participate in oligomer formation, the interactions between them, and the effect of residue mutations on the binding free energy of the peptides. Our findings suggest that larger oligomers are produced from the association of smaller and intermediate oligomers. The peptides retain their helical structure during aggregation with transient occurrences of 3-10 helix and turns. Hydrophobic interactions are vital in the aggregation of these peptides with Ile24 playing a crucial role. Mutation of this residue to alanine decreases the peptides' binding free energy, resulting in reduced aggregation tendency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call