Abstract

The rapid, repolarizing K(+) current in cardiomyocytes (I(Kr)) has unique inwardly rectifying properties that contribute importantly to the downstroke of the cardiac action potential. The human ether-à-go-go-related gene (HERG) expresses a macroscopic current virtually identical to I(Kr), but a description of the single-channel properties that cause rectification is lacking. For this reason we measured single-channel and macropatch currents heterologously expressed by HERG in Xenopus oocytes. Our experiments had two main findings. First, the single-channel current-voltage relation showed inward rectification, and conductance was 9.7 pS at -100 mV and 3.9 pS at 100 mV when measured in symmetrical 100 mM K(+) solutions. Second, single channels frequently showed no openings during depolarization but nevertheless revealed bursts of openings during repolarization. This type of gating may explain the inward rectification of HERG currents. To test this hypothesis, we used a three-closed state kinetics model and obtained rate constants from fits to macropatch data. Results from the model are consistent with rapid inactivation from closed states as a significant source of HERG rectification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.