Abstract

We investigated picosecond carrier recombination in Si/SiO2 nanocrystal superlattices by ultrafast transient transmission, time-resolved photoluminescence, and Raman spectroscopy. The recombination is of multicarrier origin and it depends strongly on the nanoscale structure of the samples (e.g., crystallinity, percolation, and size distribution). Several recombination pathways were found, including Auger recombination, trapped-carrier Auger recombination, exciton–exciton recombination, and subsequent trapping in band tail states of amorphous silicon phase. The sample microscopic structure is determined using a single parameter, the stoichiometric parameter x, during the plasma-enhanced chemical-vapor deposition process. The percolated samples are hot candidates for all-silicon tandem photovoltaic solar cells in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.