Abstract

Freshly detached coralloid roots of several cycad species were found to bleed spontaneously from xylem, permitting identification of products of nitrogen transfer from symbiotic organ to host. Structural features relevant to the export of fixed N were described for Macrozamia riedlei (Fisch. ex Gaud.) Gardn. the principal species studied. Citrulline (Cit), glutamine (Gln) and glutamic acid (Glu), the latter usually in a lesser amount, were the principal translocated solutes in Macrozamia (5 spp.), Encephalartos (4 spp.) and Lepidozamia (1 sp.), while Gln and a smaller amount of Glu, but no Cit were present in xylem sap of Bowenia (1 sp.),and Cycas (2 spp.). Time-course studies of (15)N enrichment of the different tissue zones and the xylem sap of (15)N2-pulse-fed coralloid roots of M. riedlei showed earlier (15)N incorporation into Gln than into Cit, and a subsequent net decline in the (15)N of Gln of the coralloid-root tissues, whereas Cit labeling continued to increase in inner cortex and stele and in the xylem sap. Hydrolysis of the (15)N-labeled Cit and Gln consistently demonstrated much more intense labeling of the respective carbamyl and amide groups than of the other N-atoms. Coralloid roots of M. riedlei pulse-fed (14)CO2 in darkness showed (14)C labeling of aspartic acid (Asp) and Cit in all tissue zones and of Cit of xylem bleeding sap. Lateral roots and uninfected apogeotropic roots of M. riedlei and M. moorei also incorporated (14)CO2 into Cit. The (14)C of Cit was restricted to the carbamyl-C. Comparable (15)N2 and CO2-feeding studies on corallid roots of Cycas revoluta showed Gln to be the dominant product of N2 fixation, with Asp and alanine as other major (14)C-labeled amino compounds, but a total absence of Cit in labeled or unlabeled form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call