Abstract

The widespread occurrence of glutathione-dependent formaldehyde dehydrogenases (GSH-FDH) suggests that this enzyme serves a conserved function in preventing the cytogenetic and potentially lethal interaction of formaldehyde with nucleic acids, proteins and other cell constituents. Despite this potential role of GSH-FDH, little is known about how its expression is regulated. Here, we identify metabolic and genetic signals that activate transcription of a GSH-FDH gene (adhI) in the bacterium Rhodobacter sphaeroides. Activity of the adhI promoter is increased by both exogenous formaldehyde and metabolic sources of this toxin. Elevated adhI promoter activity in ΔGSH-FDH mutants implicates formaldehyde or the glutathione adduct that serves as a GSH-FDH substrate, S-hydroxymethylglutathione, as a transcriptional effector. From studying adhI expression in different host mutants, we find that the photosynthetic response regulator PrrA and the trans-acting spd-7 mutation increase function of this promoter. The behavior of a nested set of adhI:: lacZ fusions indicates that activation by formaldehyde, PrrA and spd-7 requires only sequences 55 bp upstream of the start of transcription. A working model is presented to explain how GSH-FDH expression responds to formaldehyde and global signals generated from the reduced pyridine nucleotide produced by the activity of this enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.