Abstract

Renal papillary collecting duct cells have been postulated to adapt their intracellular osmolality to the large changes in interstitial osmolality by changing their content of 'non-perturbing' organic osmolytes such as sorbitol and myo-inositol. 13C-NMR was used in this study to elucidate the metabolic pathways leading to a synthesis of those compounds. Incubation of rabbit renal papillary tissue with [1-13C]glucose showed label scrambling mainly into sorbitol (C-1) and lactate (C-3). This result confirms activity of aldose reductase and glycolytic enzymes in renal papillary cells. Using [3-13C]alanine or [2-13C]pyruvate as carbon source, 13C-labeling of sorbitol and myo-inositol was observed, indicating that renal papillary tissue possesses, in addition, gluconeogenic activity. The latter assumption is supported by the result that in enzyme assays rabbit kidney papilla and isolated rat kidney papillary collecting duct cells show significant fructose-1,6-bisphosphatase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.