Abstract

AbstractArctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem‐scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Σ (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) toward hydrogenotropic (September) methanogenesis at sites located toward the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape‐scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant‐mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly, CH4 oxidation only consumed approximately 2.51 ± 0.82% (July) and 0.79 ± 0.79% (September) of CH4 produced at the frost table, contributing to <0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e‐ acceptors. This work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale and suggests broad scale investigations are required to build better regional or pan‐Arctic representations of CH4 and CO2 production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.