Abstract
Recent studies have shown that higher plants are unable to methylate arsenic (As), but it is not known whether methylated As species taken up by plants can be volatilized. Rice (Oryza sativa L.) plants were grown axenically or in a nonsterile soil using a two-chamber system. Arsenic transformation and volatilization were investigated. In the axenic system, uptake of As species into rice roots was in the order of arsenate (As(V)) > monomethylarsonic acid (MMAs(V)) > dimethylarsinic acid (DMAs(V)) > trimethylarsine oxide (TMAs(V)O), but the order of the root-to-shoot transport index (Ti) was reverse. Also, volatilization of trimethylarsine (TMAs) from rice plants was detected when plants were treated with TMAs(V)O but not with As(V), DMAs(V), or MMAs(V). In the soil culture, As was volatilized mainly from the soil. Small amounts of TMAs were also volatilized from the rice plants, which took up DMAs(V), MMAs(V), and TMAs(V)O from the soil solution. The addition of dried distillers grain (DDG) to the soil enhanced As mobilization into the soil solution, As methylation and volatilization from the soil, as well as uptake of different As species and As volatilization from the rice plants. Results show that rice is able to volatilize TMAs after the uptake of TMAs(V)O but not able to convert inorganic As, MMAs(V) or DMAs(V) into TMAs and that the extent of As volatilization from rice plants was much smaller than that from the flooded soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.