Abstract

This paper elucidates the challenges and opportunities inherent in integrating data-driven methodologies into geotechnics, drawing inspiration from the success of materials informatics. Highlighting the intricacies of soil complexity, heterogeneity, and the lack of comprehensive data, the discussion underscores the pressing need for community-driven database initiatives and open science movements. By leveraging the transformative power of deep learning, particularly in feature extraction from high-dimensional data and the potential of transfer learning, we envision a paradigm shift towards a more collaborative and innovative geotechnics field. The paper concludes with a forward-looking stance, emphasizing the revolutionary potential brought about by advanced computational tools like large language models in reshaping geotechnics informatics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.