Abstract
A plasma reactor based on dielectric barrier discharge has been developed for oxidative cracking of hexane to yield olefins at atmospheric pressure. Dissociation of hexane in the presence of oxygen with nonequilibrium plasma state represents complex chemistry, and both conversion and product selectivities differ significantly from the thermodynamic equilibrium state. In order to understand plasma chemistry initiated by electron impact processes, the Boltzmann equation is solved to determine the average electron energy and energy fractions in collision processes. Activation of oxygen in the plasma brings a new route with electron impact dissociation yielding atomic oxygen radicals and initiates oxidative cracking of hexane. Changes in certain features of the dissociation pattern of hexane to yield olefin products with varying parameters such as temperature, oxygen addition, and helium concentration are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.