Abstract

Cell-based, phenotypic screening of small molecules often identifies compounds with provocative biological properties. However, determining the cellular target(s) and/or mechanism of action (MoA) of lead compounds remains an extremely challenging and time-consuming exercise. To provide insights into a compound's cellular action and greatly reduce the time required for MoA determination, we have developed a screening platform consisting of an extensive series of reporter gene assays (RGAs). A collection of > 11,000 compounds of known MoA (e.g., World Drug Index entries) were screened against the entire panel. The output provided evidence that an RGA signature could be ascribed to numerous, biologically diverse MoAs. The reference database generated suggested novel biological activity for particular compounds. For example, the profiling data led to the prediction that the cellular target of the natural product terprenin was dihydroorotate dehydrogenase (DHODH), which was confirmed experimentally. The screening methodology developed for this endeavor renders it amenable to the future examination of compounds with unknown MoA, in an automated, inexpensive, and time-efficient manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.