Abstract

2'-Fucosyllactose (2'-FL), one of the most valuable oligosaccharides in human milk, is used as an emerging food ingredient in the nutraceutical and food industries due to its numerous health benefits. Herein, the de novo and salvage pathways for GDP-fucose synthesis were engineered and optimized in Escherichia coli BL21 (DE3) to improve the production of 2'-FL. The de novo pathway genes encoding phosphomannomutase (ManB), mannose-1-phosphate guanyltransferase (ManC), GDP-d-mannose-4,6-dehydratase (Gmd), and GDP-l-fucose synthase (WcaG) combined with the gene from the salvage pathway encoding fucose kinase/fucose-1-phosphate guanylyltransferase (Fkp) were reconstructed in two vectors to evaluate the GDP-fucose biosynthesis. Then, the fucT2 gene, encoding α1,2-fucosyltransferase, was introduced into the GDP-fucose-overproducing strains to realize 2'-FL biosynthesis. Furthermore, the genes in bypass pathways, including lacZ, fucI, fucK, and wcaJ, were inactivated to improve 2'-FL production. In addition, the two GDP-fucose synthesis pathways, along with fucT2, were transcriptionally fine-tuned to efficiently increase 2'-FL production. The final metabolically engineered E. coli produced 2.62 and 14.1 g/L in shake-flask and fed-batch cultivations, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.