Abstract
α-Ketoglutaric acid (α-KG) is a multifunctional dicarboxylic acid in the tricarboxylic acid (TCA) cycle, but microbial engineering for α-KG production is not economically efficient, due to the intrinsic inefficiency of its biosynthetic pathway. In this study, pathway engineering was used to improve pathway efficiency for α-KG production in Escherichia coli. First, the TCA cycle was rewired for α-KG production starting from pyruvate, and the engineered strain E. coli W3110Δ4-PCAI produced 15.66 g/L α-KG. Then, the rewired TCA cycle was optimized by designing various strengths of pyruvate carboxylase and isocitrate dehydrogenase expression cassettes, resulting in a large increase in α-KG production (24.66 g/L). Furthermore, acetyl coenzyme A (acetyl-CoA) availability was improved by overexpressing acetyl-CoA synthetase, leading to α-KG production up to 28.54 g/L. Finally, the engineered strain E. coli W3110Δ4-P(H) CAI(H) A was able to produce 32.20 g/L α-KG in a 5-L fed-batch bioreactor. This strategy described here paves the way to the development of an efficient pathway for microbial production of α-KG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.