Abstract

Lung cancer is characterized by uncontrolled cell growth in the lung tissue. A major challenge in cancer research is the biological interpretation of the complexity of cancer somatic mutation profiles. This study examines the role of pathway crosstalk in the metastatic process of lung cancer cells based on DNA microarray analysis. We downloaded the gene expression profile GSE10096 from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified and the gene functions of selected DEGs were further analyzed. After KEGG pathway analysis, dysfunctional pathways and dysfunctional crosstalk between pathways in two types of lung cancer cells (low metastasis, M1, and high metastasis, M5) were examined. A total of 13433 genes were filtered as DEGs, and after pathway analysis, 108 signaling pathways related to cancer signaling pathways were screened, including a host pathway hsa05223 and 79 neighbor pathways. Dysfunctional crosstalk analysis of pathways revealed that pathway crosstalk dysfunction of M1 and M5 cells mainly occurred between hsa05223 (non-small cell lung cancer) and hsa04310 (Wnt signaling pathway), and between non-small cell lung cancer and hsa04520 (adherens junction), respectively. Significant pathway crosstalk dysfunction also existed between adherens junction and other classical signaling pathways such as hsa04110 (cell cycle), hsa04310 (Wnt signaling pathway), hsa04350 (TGF-beta signaling pathway), and hsa04630 (Jak-STAT signaling pathway). Our discovery will help to elucidate the molecular mechanisms of the high carcinogenic and metastatic potential of lung cancer cells. In addition, it will pave the way to developing effective therapies for lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.