Abstract

Studies were carried out on the hierarchical self-assembly versus pathway complexity of N-annulated perylenes 1-3, which differ only in the nature of the linking groups connecting the perylene core and the side alkoxy chains. Despite the structural similarity, compounds 1 and 2 exhibit noticeable differences in their self-assembly. Whereas 1 forms an off-pathway aggregate I that converts over time (or by addition of seeds) into the thermodynamic, on-pathway product, 2 undergoes a hierarchical process in which the kinetically trapped monomer species does not lead to a kinetically controlled supramolecular growth. Finally, compound 3, which lacks the amide groups, is unable to self-assemble under identical experimental conditions and highlights the key relevance of the amide groups and their position to govern the self-assembly pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.