Abstract
Pathway analysis, also known as gene-set enrichment analysis, is a multilocus analytic strategy that integrates a priori, biological knowledge into the statistical analysis of high-throughput genetics data. Originally developed for the studies of gene expression data, it has become a powerful analytic procedure for in-depth mining of genome-wide genetic variation data. Astonishing discoveries were made in the past years, uncovering genes and biological mechanisms underlying common and complex disorders. However, as massive amounts of diverse functional genomics data accrue, there is a pressing need for newer generations of pathway analysis methods that can utilize multiple layers of high-throughput genomics data. In this review, we provide an intellectual foundation of this powerful analytic strategy, as well as an update of the state-of-the-art in recent method developments. The goal of this review is threefold: (1) introduce the motivation and basic steps of pathway analysis for genome-wide genetic variation data; (2) review the merits and the shortcomings of classic and newly emerging integrative pathway analysis tools; and (3) discuss remaining challenges and future directions for further method developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of genetics and genomics = Yi chuan xue bao
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.