Abstract

BackgroundGene expression profiling of rare cancers has proven challenging due to limited access to patient materials and requirement of intact, non-degraded RNA for next-generation sequencing. We customized a gene expression panel compatible with degraded RNA from formalin-fixed, paraffin-embedded (FFPE) patient cancer samples and investigated its utility in pathway activity profiling in patients with metaplastic breast cancer (MpBC).MethodsActivity of various biological pathways was profiled in samples from nineteen patients with MpBC and 8 patients with invasive ductal carcinoma with triple negative breast cancer (TNBC) phenotype using a custom gene expression-based assay of 345 genes.ResultsMpBC samples of mesenchymal (chondroid and/or osteoid) histology demonstrated increased SNAI1 and BCL2L11 pathway activity compared to samples with non-mesenchymal histology. Additionally, late cornified envelope and keratinization genes were downregulated in MpBC compared to TNBC, and epithelial-to-mesenchymal transition (EMT) and collagen genes were upregulated in MpBC. Patients with high activity of an invasiveness gene expression signature, as well as high expression of the mesenchymal marker and extracellular matrix glycoprotein gene SPARC, experienced worse outcomes than those with low invasiveness activity and low SPARC expression.ConclusionsThis study demonstrates the utility of gene expression profiling of metaplastic breast cancer FFPE samples with a custom counts-based assay. Gene expression patterns identified by this assay suggest that, although often histologically triple negative, patients with MpBC have distinct pathway activation compared to patients with invasive ductal TNBC. Incorporation of targeted therapies may lead to improved outcome for MpBC patients, especially in those patients expressing increased activity of invasiveness pathways.

Highlights

  • Gene expression profiling of rare cancers has proven challenging due to limited access to patient materials and requirement of intact, non-degraded RNA for next-generation sequencing

  • metaplastic breast cancer (MpBC) are often negative for estrogen/progesterone receptor expression and HER2 amplification, yet this subtype differs in histology from invasive ductal triple negative breast cancer (TNBC) by the presence of mesenchymal, spindle cell, and/or squamous neoplastic cell populations [1]

  • Patients with MpBC suffer from a worse outcome than those with invasive ductal TNBC, and MpBC patients demonstrate a poor response to chemotherapy [3,4,5]

Read more

Summary

Introduction

Gene expression profiling of rare cancers has proven challenging due to limited access to patient materials and requirement of intact, non-degraded RNA for next-generation sequencing. We customized a gene expression panel compatible with degraded RNA from formalin-fixed, paraffin-embedded (FFPE) patient cancer samples and investigated its utility in pathway activity profiling in patients with metaplastic breast cancer (MpBC). MpBCs are often negative for estrogen/progesterone receptor expression and HER2 amplification, yet this subtype differs in histology from invasive ductal triple negative breast cancer (TNBC) by the presence of mesenchymal (chondroid, osteoid), spindle cell, and/or squamous neoplastic cell populations [1]. This histologically complex cancer often presents with multiple cell populations of mixed histologies. Comprehensive molecular profiling of MpBC and its histological subtypes is urgently needed

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call