Abstract

It is well known that satisfiability is decidable for Horn clauses of the class . Since arbitrary Horn clauses can naturally be approximated by -clauses, can be used for realizing any program analysis which can be specified by means of Horn clauses. Recently, we have shown that decidability for Horn clauses from is retained if the clauses are either extended with tests for disequality between subterms identified by paths or for disequality between homomorphic images of terms. These two results refer to orthogonal extensions of -clauses. Here, we provide a generalization of both results. For that, we introduce hom-path disequalities and show that for each finite set of -clauses extended with such tests an equivalent tree automaton with hom-path disequalities can be constructed. Since emptiness for that class of automata has been shown decidable by Godoy et al. in 2010, we conclude that satisfiability is decidable for -clauses with hom-path disequalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.