Abstract

We study existence, uniqueness and triviality of path cocycles in the quantum Cayley graph of universal discrete quantum groups. In the orthogonal case we find that the unique path cocycle is trivial, in contrast with the case of free groups where it is proper. In the unitary case it is neither bounded nor proper. From this geometrical result we deduce the vanishing of the first L2-Betti number of Ao(In).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.