Abstract
We study the Jacobi-Trudi-type determinant which is conjectured to be the q-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type D n . Unlike the A n and B n cases, a simple application of the Gessel-Viennot path method does not yield an expression of the determinant by a positive sum over a set of tuples of paths. However, applying an additional involution and a deformation of paths, we obtain an expression by a positive sum over a set of tuples of paths, which is naturally translated into the one over a set of tableaux on a skew diagram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.