Abstract

Neuroendocrine tumors (NETs) were initially identified as a separate entity in the early 1900s as a unique malignancy that secretes bioactive amines. GI-NETs are the most frequent type and represent a unique subset of NETs, because at least 75% of these tumors represent gastrin stimulation of the enterochromaffin-like cell located in the body of the stomach. The purpose of this review is to understand the specific role of gastrin in the generation of Gastric NETs (G-NETs). We review here the origin of enterochromaffin cells gut and the role of hypergastrinemia in gastric enteroendocrine tumorigenesis. We describe generation of the first genetically engineered mouse model of gastrin-driven G-NETs that mimics the human phenotype. The common mechanism observed in both the hypergastrinemic mouse model and human carcinoids is translocation of the cyclin-dependent inhibitor p27kip to the cytoplasm and its subsequent degradation by the proteasome. Therapies that block degradation of p27kip, the CCKBR2 gastrin receptor, or gastrin peptide are likely to facilitate treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.