Abstract

The pathophysiology of cerebral ischemia is best understood in animal models of stroke. Within minutes of interrupted blood flow, mitochondria are deprived of substrate, which prevents adenosine triphosphate generation and results in membrane depolarization. This leads to increased intracellular calcium and sodium concentration followed by generation of free radicals and initiation of apoptosis. Glutamate release from ischemic neurons contributes to cellular damage. Each step in this complex, interdependent series of events offers a potential point to intervene and prevent neuronal death. Although many human trials in acute stroke therapy have had disappointing results, many promising therapies are in the pipeline, including hypothermia and free-radical inhibitors. Herein, the author discusses the pathophysiology of focal cerebral ischemia as has been revealed in rodent models and reviews the major human trials according to treatment mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.