Abstract

Oxidative stress has been proposed as a potential factor associated with the establishment and progression of endometriosis. Although a few studies have shown possible mechanisms which may play roles in development, progression of endometriosis, few are known in regards of initiation of the disease, especially in the relationship with endometrium. The aim of our study was to investigate whether normal endometrium may be changed by Damage-associated molecular patterns (DAMPs), which may contribute developing pathologic endometrium to induce endometriosis. Endometrial tissues were obtained from 10 patients with fibroids undergoing hysterectomy at a university hospital. High mobility group box-1 (HMGB-1), which is a representative DAMP, has been chosen that may induce alteration in endometrium. In preceding immunohistochemistry experiments using paraffin-block sections from endometriosis (N = 33) and control (N = 27) group, retrospectively, HMGB-1 expression was shown in both epithelial and stromal cell. HMGB-1 expression was significantly increased in secretory phase of endometriosis group, comparing to the controls. To examine the alteration of endometrial stromal cell (HESC) by oxidative stress in terms of HMGB-1, cell proliferation and expression of its receptor, TLR4 was measured according to recombinant HMGB-1 use. Cell proliferation was assessed by CCK-8 assay; real-time PCR and western blotting were used to quantify Toll like receptor 4 (TLR4) mRNA and protein expression respectively. A TLR4 antagonist (LPS-RS) and an inhibitor of the NF-κB pathway (TPCA-1, an IKK-2 inhibitor) were used to confirm the relationships between HMGB-1, TLR4, and the NF-κB pathway. Passive release of HMGB-1 was significantly proportional to the increase in cell death (P<0.05). HESCs showed significant proliferation following treatment with rHMGB-1 (P<0.05), and increased TLR4 expression was observed following rHMGB-1 treatment (P<0.05) in a concentration-dependent manner. Treatment with a TLR4 antagonist and an NF-κB inhibitor resulted in suppression of rHMGB-1-induced HESC proliferation (P<0.05). Levels of IL-6 were significantly decreased following treatment with an NF-κB inhibitor (P<0.05). Our results support the development of altered, pathological endometrium resulted from oxidative stress in normal endometrium. These findings may provide important insights into the changes in endometrium linking the development and progression of endometriosis.

Highlights

  • Endometriosis is a gynecological disorder that causes pelvic pain and infertility in women of reproductive age [1]

  • Because retrograde menstruation occurs in about 80% of women, while endometriosis occurs in only 10%–15% of women, additional mechanisms must contribute to the survival of ectopic endometrium outside the uterus [2]

  • Immunohistochemistry showed presence of High mobility group box-1 (HMGB-1) in human endometrial cells and significantly increased HMGB-1 expression during secretory phase in endometriosis group compared to the normal controls

Read more

Summary

Introduction

Endometriosis is a gynecological disorder that causes pelvic pain and infertility in women of reproductive age [1]. While the etiology of the disease remains unclear, retrograde menstruation, coelomic metaplasia, and lymphovascular metastasis have been shown to be the major pathological characteristics of endometriosis. None of these theories can fully explain the pathogenesis of endometriosis. Oxidative stress has been proposed as a potential factor associated with the establishment and progression of endometriosis [3,4]. Oxidative stress in the pelvic cavity of patients with endometriosis may be an important facilitator or inducer of chronic nuclear factor-kappa B (NF-κB) activation, enhancing NF-κB-mediated inflammatory reactions and endometriotic cell survival and growth [4]. The vulnerability of the endometrial cells to oxidative stress and the subsequent activation of the oxidative stress-NF-κB axis may constitute the basis for the pathophysiology of endometriosis

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call