Abstract
The purpose of this research was to explore some morphological, physiological, and biochemical changes in female and fetal Wistar rats under heat stress. The experiment involved 30 animals, including two experimental groups (pregnant and nonpregnant females) kept under heat stress at 32°C and one control group consisting of healthy individuals kept in standard vivarium conditions. After dissection, fixation, dehydration, and primary processing, tissue samples were embedded in a mixture of paraffin and lanolin to obtain material for sections. Sections were made using a freezing and angular microtome and stained with hematoxylin and fuchsine solutions. Changes in morphology were assessed by microscopy using a Leitz DIAPLAN system. As a result of heat stress, an increase in linear cell size, capillary network area, and adrenal mass was observed; adipocytes lost lipid vacuoles; prismatic thyroid cells were replaced by flat cells; hypothyroidism; an increase in the number of osteocyte lacunae; and increased osteoclast activity in bone tissue; interstitial and intracellular oedema and caryopycnosis of ventricular cardiomyocytes; reduction in the diameter of skeletal muscle fibers and replacement of tissue with collagen fibers; water loss in the structure of myofibrils; destructive local changes, hyperchromatosis and caryopycnosis of the hippocampus. The data obtained allows predicting the possible consequences of prolonged overheating of tissues of other vertebrates and the human body.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The journal of obstetrics and gynaecology research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.