Abstract

Antibodies to different brain and peripheral nerve proteins have recently been found to be associated with several different autoimmune diseases. They can bind to either neuronal or non-neuronal antigens and may have a pathogenic role by themselves or in synergy with other inflammatory mediators after penetrating the blood-brain barrier or the blood-nerve barrier. In this review, we will describe the association with the impairment of immune tolerance, innate immunity, and autoantibody production of myasthenia gravis (MG), systemic lupus erythematosus (SLE), and Guillain-Barré syndrome (GBS). Impairment of central tolerance, which is characterized by the repertoire selection of immature T-lymphocytes in the thymus, is seen in patients with MG who are positive for anti-Ach R antibodies. Impairment of peripheral tolerance due to activation of autoreactive T-cells and suppression of regulatory T-cells is seen in SLE. In addition, molecular mimicry between the lipooligosaccharides of Campylobacter jejuni and gangliosides of the peripheral nerves results in the production of anti-gangliosides antibodies in GBS. Next, we will describe the antibody-mediated pathology in neuromyelitis optica and anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. The binding of anti-aquaporin-4 antibodies or anti-NMDAR antibodies to their respective targets initiates target internalization and complement- or antibody-dependent cellular cytotoxicity of the target cells. Further understanding of antibody-mediated pathology may suggest novel therapeutic strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call