Abstract

It has been suggested that patients with motor neurone disease (MND) and those with MND combined with behavioural variant frontotemporal dementia (bvFTD) (ie FTD + MND) or with FTD alone might exist on a continuum based on commonalities of neuropathology and/or genetic risk. Moreover, it has been reported that both a neuronal and a glial cell tauopathy can accompany the TDP-43 proteinopathy in patients with motor neurone disease (MND) with cognitive changes, and that the tauopathy may be fundamental to disease pathogenesis and clinical phenotype. In the present study, we sought to substantiate these latter findings, and test this concept of a pathological continuum, in a consecutive series of 41 patients with MND, 16 with FTD + MND and 23 with FTD without MND. Paraffin sections of frontal, entorhinal, temporal and occipital cortex and hippocampus were immunostained for tau pathology using anti-tau antibodies, AT8, pThr175 and pThr217, and for amyloid β protein (Aβ) using 4G8 antibody. Twenty four (59 %) patients with MND, 7 (44 %) patients with FTD + MND and 10 (43 %) patients with FTD showed ‘significant’ tau pathology (ie more than just an isolated neurofibrillary tangle or a few neuropil threads in one or more brain regions examined). In most instances, this bore the histological characteristics of an Alzheimer’s disease process involving entorhinal cortex, hippocampus, temporal cortex, frontal cortex and occipital cortex in decreasing frequency, accompanied by a deposition of Aβ up to Thal phase 3, though 2 patients with MND, and 1 with FTD did show tau pathology beyond Braak stage III. Four other patients with MND showed novel neuronal tau pathology, within the frontal cortex alone, specifically detected by pThr175 antibody, which was characterised by a fine granular or more clumped aggregation of tau without neurofibrillary tangles or neuropil threads. However, none of these 4 patients had clinically evident cognitive disorder, and this type of tau pathology was not seen in any of the FTD + MND or FTD patients. Finally, two patients, one with MND and one with FTD, showed a tau pathology consistent with Argyrophilic Grain Disease (AGD). Western blotting and use of 3- and 4-repeat tau antibodies confirmed the histological interpretation of Alzheimer’s disease type pathology in all instances except for those patients with accompanying AGD where a banding pattern on western blot, and immunohistochemistry, confirmed 4-repeat tauopathy. In all 3 patient groups, amyloid pathology was more likely to be present in patients dying after 65 years of age, and in the presence of APOE ε4 allele. We conclude that tau pathological changes are equally common amongst patients with MND, FTD + MND and FTD though, in most instances, these are limited in extent. In patients with MND, when cognitive impairment is present this is most likely due to an accompanying/evolving (coincidental) Alzheimer’s disease process or, as in a single case, Dementia with Lewy bodies, within the cerebral cortex rather than as a result of TDP-43 proteinopathy. Conversely, in FTD and FTD + MND dementia is more likely to be associated with TDP-43 proteinopathy than tau. Hence, present study shows no progression in severity of (tau) pathology from MND through FTD + MND to FTD, and does not support the concept of these conditions forming a continuum of clinical or pathological change.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-016-0301-z) contains supplementary material, which is available to authorized users.

Highlights

  • Motor Neurone Disease (MND), known as Amyotrophic Lateral Sclerosis (ALS), is classically described as a neurodegenerative disorder of the locomotor system, characterised by degeneration and loss of upper and lower motor neurones, leading to a progressive weakness and wasting of limb, bulbar and trunk musculature, with death usually occurring within 2–3 years of symptom onset [3]

  • All sporadic, and most familial cases, are characterised by the presence of neuronal cytoplasmic inclusions (NCI) within spinal and brainstem motor neurones composed of the TAR DNA binding protein of 43KDa, TDP-43, whereas cases associated with mutations in SOD-1 and FUS display NCI within these same cell types containing these respective proteins [3]

  • In the present study we have shown there to be ‘significant’ neuronal tau pathology in 59 % patients with motor neurone disease (MND), 44 % patients with FTD + MND and 44 % patients with FTD, whereas some degree of amyloid pathology was present in only 34 % patients with MND, 7 % patients with FTD + MND and 26 % patients with FTD

Read more

Summary

Introduction

Motor Neurone Disease (MND), known as Amyotrophic Lateral Sclerosis (ALS), is classically described as a neurodegenerative disorder of the locomotor system, characterised by degeneration and loss of upper and lower motor neurones, leading to a progressive weakness and wasting of limb, bulbar and trunk musculature, with death usually occurring within 2–3 years of symptom onset [3]. It affects 2–3 people in 100,000 worldwide, males slightly more than females. In keeping with the pattern of cognitive change, frontal lobe abnormalities have been demonstrated in MND both on structural [2, 17] and functional [1, 18] imaging. bvFTD may precede, follow or coincide with the onset of motor symptoms [24], reinforcing the inter-relationship between the two disorders

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call