Abstract

Scattering of electromagnetic fields by a defect layer embedded in a slow-light periodically layered ambient medium exhibits phenomena markedly different from typical scattering problems. In a slow-light periodic medium, constructed by Figotin and Vitebskiy, the energy velocity of a propagating mode in one direction slows to zero, creating a “frozen mode” at a single frequency within a pass band, where the dispersion relation possesses a flat inflection point. The slow-light regime is characterized by a 3 × 3 Jordan block of the log of the 4 × 4 monodromy matrix for EM fields in a periodic medium at special frequency and parallel wavevector. The scattering problem breaks down as the 2D rightward and leftward mode spaces intersect in the frozen mode and therefore span only a 3D subspace V˚ of the 4D space of EM fields. Analysis of pathological scattering near the slow-light frequency and wavevector is based on the interaction between the flux-unitary transfer matrix T across the defect layer and the projections to the rightward and leftward spaces, which blow up as Laurent-Puiseux series. Two distinct cases emerge: the generic, non-resonant case when T does not map V˚ to itself and the quadratically growing mode is excited and the resonant case, when V˚ is invariant under T and a guided frozen mode is resonantly excited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.