Abstract

Fuchs endothelial corneal dystrophy (FECD) is a degenerative disease characterized by corneal endothelial decompensation. FECD causes corneal stromal and epithelial edema and progressively develops into bullous keratopathy, which can eventually lead to blindness. However, the exact pathogenesis is unknown. In this study, we performed an in-depth bioinformatic analysis of the dataset GSE74123 to determine the differentially expressed genes (DEGs) of symptomatic late-onset FECD compared with a normal control. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were used to analyze the pathological molecular mechanism of FECD. We found that cell senescence, reactive oxygen species (ROS), the extracellular matrix (ECM), epithelial-mesenchymal transition (EMT) and immune response-related genes play an important role in the pathological development of symptomatic late-onset FECD. In addition, we revealed that down-regulated IL-6, enhanced NF-κB activity and a suite of orchestrated chemokine responses induce fibrocyte differentiation from monocyte to dendritic cell maturation. PI3K plays a key role in the molecular mechanism of symptomatic late-onset FECD. This study enhances our understanding of the molecular mechanism of FECD pathogenesis and will improve the diagnostics and therapy of FECD patients in the future.

Highlights

  • Fuchs endothelial corneal dystrophy (FECD), known as cornea guttata, was originally reported and described by Fuchs in 1910[1]

  • GSE74123 was downloaded from the Gene Expression Omnibus (GEO) database

  • Red dots represent up-regulated genes, and blue dots represent down-regulated genes (Fig 1D). These results demonstrated that the FECD group and control group had good biological repeatability

Read more

Summary

Introduction

Fuchs endothelial corneal dystrophy (FECD), known as cornea guttata, was originally reported and described by Fuchs in 1910[1].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call