Abstract

The objective of this study was to investigate spleen pathology and immune cell subset alterations in mice exposed to acute and chronic restraint stress over various timeframes. A deeper understanding of stress-induced spleen injuries can provide new insights into the mechanisms underlying stress-induced disorders. C57BL/6N mice were restrained for different durations (1, 3, 7, 14 and 21 days) for 6–8 h daily. The control mice were observed at the same time points. Post restraint, behavioural experiments were conducted to assess spleen weight, gross morphology and microscopic histological changes. Immunohistochemical staining was used to detect changes in glucocorticoid receptor (GR) expression, immune cell subsets and cell proliferation in response to stress. Our analysis revealed significant behavioural abnormalities in the stressed mice. In particular, there was an increase in the nuclear expression of GR beginning on Day 3, and it peaked on Day 14. The spleens of stressed mice displayed a reduction in size, disordered internal tissue structure and reduced cell proliferation. NK cells and M2-type macrophages exhibited immune cell subset alterations under stress, whereas T or B cells remained unaltered. Restraint stress can lead to pathomorphological alterations in spleen morphology, cell proliferation and immune cell counts in mice. These findings suggest that stress-induced pathological changes can disrupt immune regulation during stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.