Abstract
Tendon calcification is a commonly associated with degenerative tendinopathy of the Achilles tendons in dogs. It is characterised by the formation of calcific deposits and is refractory to treatment, often re-forming after surgical removal. Little is known about its pathogenesis and therefore the aims of this study were to develop an in vitro model of canine tendon calcification and use this model to investigate mechanisms driving calcification. Cells from the canine Achilles tendon were cultured with different calcifying media to establish which conditions were best able to induce specific, cell-mediated calcification. Once optimum calcification conditions had been established, the effect of ATP treatment on calcification was assessed. Results revealed that 2 mM di-sodium phosphate combined with 2 mM calcium chloride provided the optimum calcifying conditions, increasing calcium deposition and expression of osteogenic-related genes similar to those observed in tendon calcification in vivo. ATP treatment inhibited calcification in a dose-dependent manner, reducing calcium deposition and increasing cell viability, while osteogenic-related genes were no longer upregulated. In conclusion, the in vitro model of canine tendon calcification developed in this study provides the ability to study mechanisms driving tendon calcification, demonstrating that ATP plays a role in modulating tendon calcification that should be explored further in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.