Abstract

Computerized methods have been developed that allow quantitative morphological analyses of whole slide images (WSIs), e.g., of immunohistochemical stains. The latter are attractive because they can provide high-resolution data on the distribution of proteins in tissue. However, many immunohistochemical results are complex because the protein of interest occurs in multiple locations (in different cells and also extracellularly). We have recently established an artificial intelligence framework, PathoFusion which utilises a bifocal convolutional neural network (BCNN) model for detecting and counting arbitrarily definable morphological structures. We have now complemented this model by adding an attention-based graph neural network (abGCN) for the advanced analysis and automated interpretation of such data. Classical convolutional neural network (CNN) models suffer from limitations when handling global information. In contrast, our abGCN is capable of creating a graph representation of cellular detail from entire WSIs. This abGCN method combines attention learning with visualisation techniques that pinpoint the location of informative cells and highlight cell-cell interactions. We have analysed cellular labelling for CD276, a protein of great interest in cancer immunology and a potential marker of malignant glioma cells/putative glioma stem cells (GSCs). We are especially interested in the relationship between CD276 expression and prognosis. The graphs permit predicting individual patient survival on the basis of GSC community features. Our experiments lay a foundation for the use of the BCNN-abGCN tool chain in automated diagnostic prognostication using immunohistochemically labelled histological slides, but the method is essentially generic and potentially a widely usable tool in medical research and AI based healthcare applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.