Abstract

BackgroundOvercrowding, abuse of antibiotics and increasing antimicrobial resistance negatively affect neonatal survival rates in developing countries. We aimed to define pathogens and their antimicrobial resistance (AMR) of early-onset sepsis (EOS), hospital-acquired late-onset sepsis (HALOS) and community-acquired late-onset sepsis (CALOS) in 25 neonatal intensive care units (NICUs) in China.Study designThis retrospective descriptive study included pathogens and their AMR from all neonates with bloodstream infections (BSIs) admitted to 25 tertiary hospitals in China from January 1, 2017, and December 31, 2019. We defined EOS as the occurrence of BSI at or before 72 h of life and late-onset sepsis (LOS) if BSI occurred after 72 h of life. LOS were classified as CALOS if occurrence of BSI was ≤ 48 h after admission, and HALOS, if occurrence was > 48 h after admission.ResultsWe identified 1092 pathogens of BSIs in 1088 infants from 25 NICUs. Thirty-two percent of all pathogens were responsible for EOS, 64.3% HALOS, and 3.7% CALOS. Gram-negative (GN) bacteria accounted for a majority of pathogens in EOS (56.7%) and HALOS (62.2%). The most frequent pathogens causing EOS were Escherichia coli (27.2%) and group B streptococcus (GBS; 14.6%) whereas in CALOS they were GBS (46.3%) and Staphylococcus aureus (41.5%). Klebsiella pneumoniae (27.9%), Escherichia coli (15.7%) and Fungi (12.8%) were the top three isolates in HALOS. Third-generation cephalosporin resistance rates in GN bacteria ranged from 9.7 to 55.6% in EOS and 26% to 63.3% in HALOS. Carbapenem resistance rates in GN bacteria ranged from 2.7 to 31.3% in HALOS and only six isolates in EOS were carbapenem resistant. High rates of multidrug resistance were observed in Klebsiella pneumoniae (60.7%) in HALOS and in Escherichia coli (44.4%) in EOS. All gram-positive bacteria were susceptible to vancomycin except for three Enterococcus faecalis in HALOS. All-cause mortality was higher among neonates with EOS than HALOS (7.4% VS 4.4%, [OR] 0.577, 95% CI 0.337–0.989; P = 0.045).ConclusionsEscherichia coli, Klebsiella pneumoniae and GBS were the leading pathogens in EOS, HALOS and CALOS, respectively. The high proportion of pathogens and high degree of antimicrobial resistance in HALOS underscore understanding of the pathogenesis and emphasise the need to devise effective interventions in developing countries.

Highlights

  • Overcrowding, abuse of antibiotics and increasing antimicrobial resistance negatively affect neonatal survival rates in developing countries

  • Thirty-two percent of all pathogens were responsible for early-onset sepsis (EOS), 64.3% hospital-acquired late-onset sepsis (HALOS), and 3.7% community-acquired late-onset sepsis (CALOS)

  • High rates of multidrug resistance were observed in Klebsiella pneumoniae (60.7%) in HALOS and in Escherichia coli (44.4%) in EOS

Read more

Summary

Introduction

Overcrowding, abuse of antibiotics and increasing antimicrobial resistance negatively affect neonatal survival rates in developing countries. We aimed to define pathogens and their antimicrobial resistance (AMR) of early-onset sepsis (EOS), hospital-acquired late-onset sepsis (HALOS) and community-acquired late-onset sepsis (CALOS) in 25 neonatal intensive care units (NICUs) in China. Klebsiella pneumoniae was primarily associated with LOS, greater morbidity, mortality and limited treatment options in neonates [11, 12]. In China, multicenter reports on pathogens of neonatal BSI were scarce and were limited to specific gestational age groups or not involving resistance analysis of antibiotics [12, 13]. Data on antimicrobial resistance (AMR) distinguishing between community-acquired LOS (CALOS) and hospitalacquired LOS (HALOS) in neonates are scarce [3, 14]. Detecting emerging resistance in neonatal BSI is vital in order to optimise empiric antibiotic therapy in HALOS, in accordance with antimicrobial stewardship principle and to reduce mortality. The present study assessed the benchmark in neonatal sepsis, distinguishing between EOS, HALOS, and CALOS, and covering the neonatal population of entire gestational age groups

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call