Abstract

Houseflies (Musca domestica) are nonbiting muscoids of importance because they can be mechanical vectors of many kinds of pathogens such as bacteria, protozoa, viruses, and helminth eggs. This study aimed to evaluate the bacterial communities associated with houseflies captured in 3 different areas on a dairy farm located in New York State. Variations in the bacterial community were also evaluated based on the flies' sex and external or internal location where the bacteria were isolated. A total of 101 flies were collected: 27 flies from the sick pen, 42 from calf hutches, and 32 from the milking parlor. A total of 485 organisms were isolated, 233 (48.0%) from 53 female flies and 252 (52.0%) from 48 male flies. Most (74%) bacteria were found in the internal parts of the flies, with only 26% isolated from the external surfaces. The number of isolates detected per fly ranged between 1 and 11. A total of 392 bacteria were identified at the species level. We isolated 26 species reported to be bovine contagious or environmental mastitis pathogens. Within the group of organisms considered contagious, we isolated Staphylococcus aureus and Mycoplasma arginini. This was the first time that a Mycoplasma species was isolated from houseflies. We identified 5 organisms considered foodborne pathogens that affect human health: Salmonella spp., Escherichia coli, Staph. aureus, Bacillus cereus, and Bacillus subtilis. Four of the organisms isolated in this study were also linked with milk spoilage, including Pseudomonas aeruginosa, Bacillus cereus, Bacillus licheniformis, and Paenibacillus lactis. This study confirmed that houseflies carry a high bacterial diversity, including organisms associated with animal infections, organisms that could be a concern for public health, or organisms that could negatively affect milk quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.