Abstract

Aeromonas veronii is as an important opportunist pathogen of many aquatic animals, which is wildly distributed in various aquatic environments. In this study, a dominant bacterium GJL1 isolated from diseased M. salmoides was identified as A. veronii according to the morphological, physiological, and biochemical characteristics, as well as molecular identification. Detection of the virulence genes showed the isolate GJL1 carried outer membrane protein A (ompA), flagellin (flgA, flgM, flgN), aerolysin (aer), cytolytic enterotoxin (act), DNases (exu), and hemolysin (hly), and the isolate GJL1 also produced caseinase, lipase, gelatinase, and hemolysin. The virulence of strain GJL1 was confirmed by experimental infection; the median lethal dosage (LD50) of the GJL1 for largemouth bass was 3.6 × 105 CFU/mL, and histopathological analysis revealed that the isolate could cause obvious inflammatory responses in M. salmoides. Additionally, the immune-related gene expression in M. salmoides was evaluated, and the results showed that IgM, HIF-1α, Hep-1, IL-15, TGF-β1, and Cas-3 were significantly upregulated after A. veronii infection. Our results indicated that A. veronii was an etiological agent causing the mass mortality of M. salmoides, which contributes to understanding the immune response of M. salmoides against A. veronii infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.