Abstract
This paper presents the rationale for classifying abalone asfa-like virus (AbALV) in the family Asfarviridae based on analyses of the host, whole genome and electron microscopic observations. AbALV caused >80 % cumulative mortality in an experimentally infected mollusc, Haliotis madaka. The AbALV genome was found to be linear, approximately 281 kb in length, with a G+C content of 31.32 %. Of the 309 predicted ORFs, 48 of the top hits with African swine fever virus (ASFV) genes in homology analysis were found to be in the central region of the genome. Synteny in the central region of the genome was conserved with ASFV. Similar to ASFV, paralogous genes were present at both ends of the genome. The pairwise average amino acid identity (AAI) between the AbALV and ASFV genomes was 33.97 %, within the range of intra-family AAI values for Nucleocytoviricota. Electron microscopy analysis of the gills revealed ~200 nm icosahedral virus particles in the cytoplasm of epithelial cells, and the size and morphology resembled ASFV. In addition to swine, ASFV also infects ticks, which are protostomes like abalone. The overall genome structure and virion morphology of AbALV and ASFV are similar, and both viruses infect protostomes, suggesting that AbALV is a new member of the family Asfarviridae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.