Abstract

PurposeThoracic aortic aneurysm and dissection (TAAD) is a life-threatening disease with often unrecognized inherited forms. We sought to identify novel pathogenic variants associated with autosomal dominant inheritance of TAAD. MethodsWe analyzed exome sequencing data from 35 French TAAD families and performed next-generation sequencing capture panel of genes in 1114 unrelated TAAD patients. Functional effects of pathogenic variants identified were validated in cell, tissue, and mouse models. ResultsWe identified five functional variants in THSD4 of which two heterozygous variants lead to a premature termination codon. THSD4 encodes ADAMTSL6 (member of the ADAMTS/L superfamily), a microfibril-associated protein that promotes fibrillin-1 matrix assembly. The THSD4 variants studied lead to haploinsufficiency or impaired assembly of fibrillin-1 microfibrils. Thsd4+/- mice showed progressive dilation of the thoracic aorta. Histologic examination of aortic samples from a patient carrying a THSD4 variant and from Thsd4+/- mice, revealed typical medial degeneration and diffuse disruption of extracellular matrix. ConclusionThese findings highlight the role of ADAMTSL6 in aortic physiology and TAAD pathogenesis. They will improve TAAD management and help develop new targeted therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.