Abstract
BackgroundAntimicrobial resistance (AMR) in food-producing animals is a global public health issue. This study investigated AMR and virulence profiles of E. coli isolated from healthy chickens in Vietnam. E. coli were isolated from fecal samples collected in five chicken farms located in the provinces of Hoa Binh, Thai Nguyen and Bac Giang in the North of Vietnam. These isolates were examined by disk diffusion for their AMR, PCR for virulence and AMR genes, pulsed-field gel electrophoresis for relatedness between blaCMY-2/blaCTX-M–positive isolates, electroporation for transferability of blaCMY-2 or blaCTX-M genes and sequencing for mutations responsible for ciprofloxacin resistance.ResultsUp to 99% of indicator isolates were multidrug resistant. Resistance to third-generation cephalosporins (3GC) was encoded by both blaCTX-M and blaCMY-2 genes; blaCTX-M genes being of genotypes blaCTX-M-1, − 14, − 15, − 17, − 57 and − 87, whereas ciprofloxacin resistance was due to mutations in the gyrA and parC genes. Some isolates originating from farms located in different provinces of Vietnam were found to be closely related, suggesting they may have been disseminated from a same source of contamination. Plasmids may also have played a role in the diffusion of 3GC-resistance as the blaCMY-2 gene was located on plasmids A/C and I1, and the blaCTX-M gene variants were carried by I1, FIB, R and HI1. Plasmids carrying the blaCMY-2/blaCTX-M genes also co-transferred resistance to other antimicrobials. In addition, isolates potentially capable of infecting humans, of which some produced blaCMY-2/blaCTX-M, were identified in this study.ConclusionsBoth clones and plasmids could be involved in the dissemination of 3GC-resistant E. coli within and between chicken farms in Vietnam. These results demonstrate the necessity to monitor AMR and control antimicrobial use in poultry in Vietnam.
Highlights
Antimicrobial resistance (AMR) in food-producing animals is a global public health issue
The aim of this study was to characterize E. coli isolates from chicken faecal samples collected in farms in Vietnam with regard to their virulence and AMR in order to elucidate the role of clones and replicon plasmids in spreading of AMR between and within farms
Our results show a predominance of the CTX-M gene among Third-generation cephalosporins (3GC)-resistant isolates, consistent with the results we obtained for E. coli isolates from carcasses in Vietnam [30]
Summary
Antimicrobial resistance (AMR) in food-producing animals is a global public health issue. E. coli were isolated from fecal samples collected in five chicken farms located in the provinces of Hoa Binh, Thai Nguyen and Bac Giang in the North of Vietnam. These isolates were examined by disk diffusion for their AMR, PCR for virulence and AMR genes, pulsed-field gel electrophoresis for relatedness between blaCMY-2/blaCTX-M–positive isolates, electroporation for transferability of blaCMY-2 or blaCTX-M genes and sequencing for mutations responsible for ciprofloxacin resistance. CTX-M-15 is, to date, the most widely distributed ESBL in E. coli worldwide [10] Genes encoding these enzymes are located on transferable genetic elements such as plasmids which may facilitate their spread to other pathogenic enterobacteria. Important incompatibility groups include I1, N, A/C and P/ F, and I1 [6, 11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.