Abstract

Coats plus syndrome is a complex genetic disorder that can be caused by mutations in genes encoding the CTC1–STN1–TEN1 (CST) complex, a conserved single-stranded DNA binding protein complex. Studies have demonstrated that mutations identified in Coats plus patients are defective in telomere maintenance, and concluded that Coats plus may be caused by telomere dysfunction. Recent studies have established that CST also plays an important role in countering replication stress and protecting the stability of genomic fragile sites. However, it is unclear whether instabilities at genomic regions may promote Coats plus development. Here, we characterize eleven reported disease-causing CTC1 missense and small deletion mutations in maintaining genome stability. Our results show that these mutations induce spontaneous chromosome breakage and severe chromosome fragmentation that are further elevated by replication stress, leading to global genome instabilities. These mutations abolish or reduce CST interaction with RAD51, disrupt RAD51 foci formation, and/or diminish binding to GC-rich genomic fragile sites under replication stress. Furthermore, CTC1 mutations limit cell proliferation under unstressed condition and significantly reduce clonal viability under replication stress. Results also suggest that the aa 600–989 region of CTC1 contains a RAD51-interacting domain. Our findings thus provide molecular evidence linking replication-associated genomic defects with CP disease pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.