Abstract

With the tremendous success of the artificial breeding of Hexagrammos otakii, the yield has been substantially improved. However, intensive farming often results in bacterial diseases; hence it is imperative to find new antimicrobial molecules. In the present study, we identified a homologous cDNA fragment of collectin-10 from H. otakii, designated as HoCL-10. The cDNA length is 899 bp, which contains an open reading frame (ORF) of 816 bp encoding a secreted protein with 272 amino acid residues. The peptide of HoCL-10 contains an N-terminal collagen domain, a neck region, and a C-terminal carbohydrate recognition domain. The qRT-PCR results revealed that HoCL-10 mRNA was highest expressed in the liver and skin and was significantly induced post-LPS stimulation. The sugar and bacteria binding assay suggested that the recombinant HoCL-10 (rHoCL-10) could recognize various pathogen-associated molecular patterns (PAMPs) and bacteria. For effect on cells, rHoCL-10 enhanced the phagocytosis and migration ability of the macrophage indicated using pro-phagocytosis assay and trans-well assay. To determine the role of HoCL-10 in the complement system, the interaction between HoCL-10 and mannose-binding lectin associated serine protease 1, 2 (MASP-1, 2) were analyzed and demonstrated using ELISA and Far-western. And in vivo, the concentration of membrane-attack complex (MAC) in fish plasma was significantly down-regulated post-injection with HoCL-10 antibody. Finally, the bacteria challenge experiment was performed, implying that HoCL-10 may assist the host in defending against microbial invasion. The findings suggest that HoCL-10 may play crucial roles in host defense against microorganisms, possibly through opsonizing pathogens and activating the complement system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call